Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.830
Filtrar
1.
BMC Cancer ; 24(1): 406, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565996

RESUMO

BACKGROUND: Autologous stem-cell transplantation (ASCT) remains a beneficial approach for patients with newly diagnosed multiple myeloma (NDMM) in the age of novel therapeutic agents. Nevertheless, limited real-world data is available to establish criteria for identifying high-risk ASCT patients. METHODS: We analyzed outcomes for 168 NDMM patients who underwent ASCT at our center from December 2015 to December 2022. We investigated the impact of the number of high-risk cytogenetics (HRCA), defined as t(4;14), t(14;16), 1q21 gain/amplification, and del(17p), as well as the post-ASCT minimal residual disease (MRD) status as prognostic indicators. We assessed progression-free survival (PFS) and overall survival (OS), and focused on identifying risk factors. RESULTS: The cohort included 42% of patients (n = 71) with 0 HRCA, 42% (n = 71) with 1 HRCA, and 16% (n = 26) with ≥ 2 HRCA. After a median follow-up of 31 months, the median PFS was 53 months (95% CI, 37-69), and OS was not reached for the entire cohort. Despite similar rates of MRD-negativity post-ASCT, patients with ≥ 2 HRCA, termed "double hit" (DH), had a significantly higher risk of progression/mortality than those with 0 or 1 HRCA. Multivariate analysis highlighted DH (HR 4.103, 95% CI, 2.046-8.231) and MRD positivity post-ASCT (HR 6.557, 95% CI, 3.217-13.366) as adverse prognostic factors for PFS, with DH also linked to inferior OS. As anticipated, DH patients with post-ASCT MRD positivity displayed the poorest prognosis, with a median PFS of 7 months post-ASCT. Meanwhile, DH patients with MRD negativity post-ASCT showed improved prognosis, akin to MRD-negative non-DH patients. It is noteworthy to exercise caution, as DH patients who initially achieved MRD negativity experienced a 41% cumulative loss of that status within one year. CONCLUSIONS: This study strongly advocates integrating DH genetic assessments for eligible ASCT patients and emphasizes the importance of ongoing MRD monitoring, as well as considering MRD-based treatment adaptation for those patients in real-world settings.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/diagnóstico , Resultado do Tratamento , Transplante Autólogo , Transplante de Células-Tronco , Aberrações Cromossômicas , Neoplasia Residual/diagnóstico
2.
Oncol Res ; 32(4): 753-768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560563

RESUMO

Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14, TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro, experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation for facilitating clinically stratified treatment of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Adesão Celular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia
3.
PLoS One ; 19(4): e0299019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593113

RESUMO

Multiple myeloma (MM) is the second most prevalent hematologic malignancy which remains uncurable. Numerous drugs have been discovered to inhibit MM cells. Indisulam, an aryl sulfonamide, has a potent anti-myeloma activity in vitro and in vivo. This study aims to explore the new mechanism of indisulam and investigate its potential use in combination with melphalan. We examined DNA damage in MM cells through various methods such as western blotting (WB), immunofluorescence, and comet assay. We also identified the role of topoisomerase IIα (TOP2A) using bioinformatic analyses. The impact of indisulam on the RNA and protein levels of TOP2A was investigated through qPCR and WB. Cell proliferation and apoptosis were assessed using CCK-8 assays, Annexin V/PI assays and WB. We predicted the synergistic effect of the combination treatment based on calculations performed on a website, and further explored the effect of indisulam in combination with melphalan on MM cell lines and xenografts. RNA sequencing data and basic experiments indicated that indisulam caused DNA damage and inhibited TOP2A expression by decreasing transcription and promoting degradation via the proteasome pathway. Functional experiments revealed that silencing TOP2A inhibited cell proliferation and induced apoptosis and DNA damage. Finally, Indisulam/melphalan combination treatment demonstrated a strong synergistic anti-tumor effect compared to single-agent treatments in vitro and in vivo. These findings suggest that combination therapies incorporating indisulam and melphalan have the potential to enhance treatment outcomes for MM.


Assuntos
Melfalan , Mieloma Múltiplo , Humanos , Melfalan/farmacologia , Melfalan/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
5.
Sci Rep ; 14(1): 8797, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627415

RESUMO

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Assuntos
Mieloma Múltiplo , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo do DNA , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Fatores de Transcrição
6.
Cancer Immunol Res ; 12(4): 385-386, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562081

RESUMO

All chimeric antigen receptor (CAR) T-cell products currently approved by the FDA are autologous, which poses several challenges for widespread use. In this issue, Degagné and colleagues present their preclinical research on creating off-the-shelf CAR T cells for multiple myeloma. They utilized the CRISPR/Cas12a genome editing platform and gene knock-in techniques to eliminate alloreactivity and decrease susceptibility to natural killer (NK)-cell elimination. This work has led to an ongoing phase I trial of off-the-shelf CAR T cells for multiple myeloma treatment. See related article by Degagné et al., p. 462 (2).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos
7.
Clin Exp Med ; 24(1): 65, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564026

RESUMO

Observational studies showed possible associations between systemic lupus erythematosus and multiple myeloma. However, whether there is a casual relationship between different types of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, multiple sclerosis, primary sclerosing cholangitis, primary biliary cirrhosis, and juvenile idiopathic arthritis) and multiple myeloma (MM) is not well known. We performed a two-sample Mendelian randomization (MR) study to estimate the casual relationship. Summary-level data of autoimmune diseases were gained from published genome-wide association studies while data of MM was obtained from UKBiobank. The Inverse-Variance Weighted (IVW) method was used as the primary analysis method to interpret the study results, with MR-Egger and weighted median as complementary methods of analysis. There is causal relationship between primary sclerosing cholangitis [OR = 1.00015, 95% CI 1.000048-1.000254, P = 0.004] and MM. Nevertheless, no similar causal relationship was found between the remaining seven autoimmune diseases and MM. Considering the important role of age at recruitment and body mass index (BMI) in MM, we excluded these relevant instrument variables, and similar results were obtained. The accuracy and robustness of these findings were confirmed by sensitivity tests. Overall, MR analysis suggests that genetic liability to primary sclerosing cholangitis could be causally related to the increasing risk of MM. This finding may serve as a guide for clinical attention to patients with autoimmune diseases and their early screening for MM.


Assuntos
Doenças Autoimunes , Colangite Esclerosante , Lúpus Eritematoso Sistêmico , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doenças Autoimunes/genética
8.
Hematology ; 29(1): 2335421, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38568025

RESUMO

OBJECTIVES: Identifying the specific biomarkers and molecular signatures of MM might provide novel evidence for MM prognosis and targeted therapy. METHODS: Bioinformatic analyses were performed through GEO and TCGA datasets. The differential expression of HIST1H2BH in MM sample was validated by the qRT-PCR. And the CCK-8 assay was performed to detect the proliferation activity of HIST1H2BH on MM cell lines. RESULTS: A total of 793 DEGs were identified between bone marrow plasma cells from newly diagnosed myeloma and normal donors in GSE6477. Among them, four vital genes (HIST1H2AC, HIST1H2BH, CCND1 and TCF7L2) modeling were constructed. The increased HIST1H2BH expression was correlated with worse survival of MM based on TCGA datasets. The transcriptional expression of HIST1H2BH was significantly up-regulated in primary MM patients. And knockdown HIST1H2BH decreased the proliferation of MM cell lines. CONCLUSIONS: We have identified up-regulated HIST1H2BH in MM patients associated with poor prognosis using integrated bioinformatical methods.


Assuntos
Mieloma Múltiplo , Humanos , Células da Medula Óssea , Linhagem Celular , Biologia Computacional , Mieloma Múltiplo/genética , Plasma
9.
Medicine (Baltimore) ; 103(14): e37624, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579060

RESUMO

INTRODUCTION: Megalosplenia in newly diagnosed multiple myeloma (MM) is extremely rare, posing diagnostic and therapeutic challenges due to its unusual location and clinical manifestations and lack of optimal therapeutic strategies. CASE PRESENTATION: A 65-year-old female who was previously healthy presented with a history of ecchymosis on her right leg accompanied by progressive fatigue for 2 weeks. She was admitted to our center in July 2019 due to thrombocytopenia. The patient presented with megalosplenia, anemia, monoclonal protein (λ-light chain type) in the serum and urine, and 45.6% malignant plasma cells in the bone marrow. Splenectomy was performed due to persistent splenomegaly after 3 cycles of the bortezomib plus dexamethasone regimen, and immunohistochemistry results indicated λ-plasmacytoma of the spleen. The same cytogenetic and molecular abnormalities, including t(14;16), 14q32 amplification, 16q32 amplification, 20q12 amplification, and a novel CYLD gene mutation, were identified using fluorescence in situ hybridization and next-generation sequencing in both bone marrow and spleen samples. Therefore, a diagnosis of MM (λ-light chain type, DS III, ISS III, R-ISS III, high-risk) with spleen infiltration was proposed. The patient did not achieve remission after induction treatment with bortezomib plus lenalidomide and dexamethasone or salvage therapy with daratumumab plus ixazomib and dexamethasone. However, she ultimately did achieve very good partial remission with a regimen of bendamustine plus lenalidomide and dexamethasone. Unfortunately, she died of pneumonia associated with chemotherapy. CONCLUSION: To our knowledge, only 8 cases of spleen plasmacytoma at MM diagnosis have been described previously. Extramedullary myeloma patients with spleen involvement at diagnosis are younger and that the condition is usually accompanied by splenic rupture with aggressive clinical features and poor prognosis. Further studies are needed to explore pathogenesis and effective therapies to prolong the survival of such patients.


Assuntos
Mieloma Múltiplo , Plasmocitoma , Humanos , Feminino , Idoso , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Lenalidomida , Bortezomib/uso terapêutico , Plasmocitoma/patologia , Hibridização in Situ Fluorescente , Dexametasona/uso terapêutico , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Enzima Desubiquitinante CYLD
10.
Asian Pac J Cancer Prev ; 25(3): 829-837, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546066

RESUMO

BACKGROUND: Multiple myeloma (MM), being the second most common hematological malignancy, has garnered significant attention. The ubiquitin proteasomal pathway (UPP), crucial for normal cell function, plays a pivotal role in myeloma pathophysiology, especially with the advent of bortezomib (BTZ). Dysregulation of the UPP has implications ranging from developmental abnormalities to cancer. OBJECTIVES: This study aimed to delineate the clinical characteristics of newly diagnosed multiple myeloma patients and investigate the influence of single nucleotide polymorphisms (SNPs) in NF-ĸB2 and TRAF3 genes on the risk and treatment response to bortezomib-based chemotherapy. MATERIALS AND METHODS: Conducted at JIPMER, Pondicherry, this prospective study enrolled 184 participants, comprising cases and controls. DNA extraction from peripheral blood samples was followed by SNP analysis through Real-time Polymerase Chain Reaction. Patients were categorized into Good and Poor responders, and SNP associations with treatment response, response rates, and survival outcomes were assessed using chi-square and Kaplan-Meier analyses. RESULTS: The median age of participants was 55 years, with backache being the most prevalent symptom (66.3%). Hypercalcemia (22%), renal failure (8.7%), and bone fractures (45.7%) were also observed, alongside high prevalence of anemia. Notably, the frequency of the TRAF3 rs12147254 A allele was lower in cases compared to controls (31% vs. 49%, P-value=0.002). Poor responders exhibited higher frequencies of the GA+AA genotypes in TRAF3 rs12147254 (OR-3.882(1.629-9.251), P-value-0.002) and NFKB2 rs1056890 (OR-3.308(1.366-8.012), P-value-0.008) when compared to good responders. The GA+AA genotype in TRAF3 rs11160707 SNP correlated with improved progression-free survival. CONCLUSION: The study findings underscore a significant association between genetic polymorphisms and treatment response outcomes, suggesting their utility in prognostic determinations and clinical outcomes prediction in multiple myeloma patients.


Assuntos
Mieloma Múltiplo , Humanos , Pessoa de Meia-Idade , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Fator 3 Associado a Receptor de TNF/genética , Estudos Prospectivos , Polimorfismo de Nucleotídeo Único , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
12.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540446

RESUMO

BACKGROUND: Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS: This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS: Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS: Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.


Assuntos
Mieloma Múltiplo , Polimorfismo Genético , Humanos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Glutationa Peroxidase/genética , Glutationa Transferase/genética , Glutationa , Apoptose
13.
Ann Clin Lab Sci ; 54(1): 56-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38514068

RESUMO

OBJECTIVE: Multiple Myeloma (MM) is a malignant hematological disease. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) acts as an oncogene in a variety of cancers. However, the role of HNRNPC in MM has not been reported so far. METHODS: The mRNA and protein expressions of HNRN-PC and FOXM1 were detected by qRT-PCR and western blot. CCK8, EDU staining, flow cytometry and western blot were used to detect cell viability and cell cycle. The extracellular flux analyzer XF96 was used to detect the production of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Lactic acid and glucose levels in culture medium were detected by lactic acid assay kits and glucose assay kits, respectively. Then, the binding ability of HNRNPC with FOXM1 was detected by RIP and the stability of FOXM1 mRNA was appraised with qRT-PCR. With the application of qRT-PCR and western blot, the transfection efficacy of si-HNRNPC and Oe-FOXM1 was examined. Western blot was applied for the estimation of GLUT1/LDHA signaling pathway-related proteins. RESULTS: The expression of HNRNPC in MM cell line was abnormally elevated. HNRNPC silence significantly inhibited the proliferation, facilitated the apoptosis, induced cycle arrest, and suppressed aerobic glycolysis in MM cells, which were all reversed by FOXM1 overexpression. It was also found that the regulatory effect of HNRNPC is realized by stabilizing FOXM1 mRNA and regulating GLUT1/LDHA pathway. CONCLUSION: HNRNPC regulated GLUT1/LDHA pathway by stabilizing FOXM1 mRNA to promote the progression and aerobic glycolysis of MM.


Assuntos
Proteína Forkhead Box M1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Mieloma Múltiplo , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glicólise/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Ácido Láctico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , L-Lactato Desidrogenase/metabolismo
14.
Leuk Res ; 139: 107469, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479337

RESUMO

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Receptores de Quimiocinas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Receptores CCR1/genética , Receptores CCR1/metabolismo
15.
Front Immunol ; 15: 1252445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455039

RESUMO

Immune dysfunction in patients with MM affects both the innate and adaptive immune system. Molecules involved in the immune response pathways are essential to determine the ability of cancer cells to escape from the immune system surveillance. However, few data are available concerning the role of immune checkpoint molecules in predicting the myeloma control and immunological scape as mechanism of disease progression. We retrospectively analyzed the clinical impact of the CD200 genotype (rs1131199 and rs2272022) in 291 patients with newly diagnosed MM. Patients with a CD200 rs1131199 GG genotype showed a median overall survival (OS) significantly lower than those with CC+CG genotype (67.8 months versus 94.4 months respectively; p: 0.022) maintaining significance in the multivariate analysis. This effect was specially detected in patients not receiving an autologous stem cell transplant (auto-SCT) (p < 0.001). In these patients the rs1131199 GG genotype negatively influenced in the mortality not related with the progression of MM (p: 0.02) mainly due to infections events.


Assuntos
Mieloma Múltiplo , Humanos , Sistema Imunitário/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/diagnóstico , Prognóstico , Estudos Retrospectivos , Transplante de Células-Tronco
16.
Nat Commun ; 15(1): 2458, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503736

RESUMO

Multiple myeloma (MM) is an osteolytic malignancy that is incurable due to the emergence of treatment resistant disease. Defining how, when and where myeloma cell intrinsic and extrinsic bone microenvironmental mechanisms cause relapse is challenging with current biological approaches. Here, we report a biology-driven spatiotemporal hybrid agent-based model of the MM-bone microenvironment. Results indicate MM intrinsic mechanisms drive the evolution of treatment resistant disease but that the protective effects of bone microenvironment mediated drug resistance (EMDR) significantly enhances the probability and heterogeneity of resistant clones arising under treatment. Further, the model predicts that targeting of EMDR deepens therapy response by eliminating sensitive clones proximal to stroma and bone, a finding supported by in vivo studies. Altogether, our model allows for the study of MM clonal evolution over time in the bone microenvironment and will be beneficial for optimizing treatment efficacy so as to significantly delay disease relapse.


Assuntos
Mieloma Múltiplo , Humanos , Osso e Ossos/patologia , Doença Crônica , Resistência a Medicamentos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
17.
Nat Commun ; 15(1): 2513, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514625

RESUMO

In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.


Assuntos
Mieloma Múltiplo , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Transcriptoma , Epigenoma , Transdução de Sinais/genética , Subunidade p52 de NF-kappa B/metabolismo
18.
J Clin Exp Hematop ; 64(1): 10-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538316

RESUMO

High-risk cytogenetic abnormalities (HRCAs) influence the prognosis of multiple myeloma (MM). However, additional cytogenetic aberrations can lead to poor outcomes. This study aimed to clarify whether HRCAs and additional chromosomal abnormalities affect MM prognosis. Patients with newly diagnosed MM who were treated with novel agents were retrospectively evaluated. The primary objective was to assess the difference in progression-free survival (PFS) and overall survival (OS) between patients with/without HRCAs and between patients with/without complex karyotype (CK). The secondary objectives were to identify factors affecting PFS/OS and factors related to CK. HRCAs were defined as del(17p), t(4;14), t(14;16), and gain/amplification(1q) assessed using fluorescence in situ hybridization. CK was defined as ≥3 chromosomal abnormalities on G-banding. Among 110 patients, 40 had HRCAs and 15 had CK. In this study, survival durations between patients with/without HRCAs were similar, while the CK group had significantly poorer PFS/OS than the no-CK group (median PFS: 9 vs. 24 months and median OS: 29 vs. 97 months, respectively), and a poor prognostic impact of CK was maintained in patients with HRCAs. In multivariate analysis, CK was correlated with poor PFS/OS (hazard ratio [HR]: 2.39, 95% confidence interval [95% CI]: 1.22-4.66 and HR: 2.66, 95% CI: 1.10-6.45, respectively). Bone marrow plasma cell (BMPC) ≥60% (odds ratio [OR] = 6.40, 95% CI: 1.50-27.2) and Revised International Staging System III (OR = 7.53, 95% CI: 2.09-27.1) were associated with CK. Our study suggests that CK may contribute to the poor prognosis of MM. Aggressive disease status including high BMPC proliferation could be relevant to CK.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Prognóstico , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Análise Citogenética , Aberrações Cromossômicas , Cariótipo
19.
Aging (Albany NY) ; 16(5): 4811-4831, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460944

RESUMO

Inhibitors of Epidermal growth factor receptor tyrosine kinase (EGFR-TKIs) are producing impressive benefits to responsive types of cancers but challenged with drug resistances. FHND drugs are newly modified small molecule inhibitors based on the third-generation EGFR-TKI AZD9291 (Osimertinib) that are mainly for targeting the mutant-selective EGFR, particularly for the non-small cell lung cancer (NSCLC). Successful applications of EGFR-TKIs to other cancers are less certain, thus the present pre-clinical study aims to explore the anticancer effect and downstream targets of FHND in multiple myeloma (MM), which is an incurable hematological malignancy and reported to be insensitive to first/second generation EGFR-TKIs (Gefitinib/Afatinib). Cell-based assays revealed that FHND004 and FHND008 significantly inhibited MM cell proliferation and promoted apoptosis. The RNA-seq identified the involvement of the MAPK signaling pathway. The protein chip screened PDZ-binding kinase (PBK) as a potential drug target. The interaction between PBK and FHND004 was verified by molecular docking and microscale thermophoresis (MST) assay with site mutation (N124/D125). Moreover, the public clinical datasets showed high expression of PBK was associated with poor clinical outcomes. PBK overexpression evidently promoted the proliferation of two MM cell lines, whereas the FHND004 treatment significantly inhibited survival of 5TMM3VT cell-derived model mice and growth of patient-derived xenograft (PDX) tumors. The mechanistic study showed that FHND004 downregulated PBK expression, thus mediating ERK1/2 phosphorylation in the MAPK pathway. Our study not only demonstrates PBK as a promising novel target of FHND004 to inhibit MM cell proliferation, but also expands the EGFR kinase-independent direction for developing anti-myeloma therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinases de Proteína Quinase Ativadas por Mitógeno , Mieloma Múltiplo , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Proliferação de Células , Mutação
20.
Blood Cancer J ; 14(1): 38, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443358

RESUMO

Multiple myeloma (MM) is a heterogenous plasma cell malignancy, for which the established prognostic models exhibit limitations in capturing the full spectrum of outcome variability. Leveraging single-cell RNA-sequencing data, we developed a novel plasma cell gene signature. We evaluated and validated the associations of the resulting plasma cell malignancy (PBM) score with disease state, progression and clinical outcomes using data from five independent myeloma studies consisting of 2115 samples (1978 MM, 65 monoclonal gammopathy of undetermined significance, 35 smoldering MM, and 37 healthy controls). Overall, a higher PBM score was significantly associated with a more advanced stage within the spectrum of plasma cell dyscrasias (all p < 0.05) and a shorter overall survival in MM (hazard ratio, HR = 1.72; p < 0.001). Notably, the prognostic effect of the PBM score was independent of the International Staging System (ISS) and Revised ISS (R-ISS). The downstream analysis further linked higher PBM scores with the presence of cytogenetic abnormalities, TP53 mutations, and compositional changes in the myeloma tumor immune microenvironment. Our integrated analyses suggest the PBM score may provide an opportunity for refining risk stratification and guide decisions on therapeutic approaches to MM.


Assuntos
Mieloma Múltiplo , Paraproteinemias , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Plasmócitos , Prognóstico , Análise de Sequência de RNA , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...